语言
没有数据
通知
无通知
ウィキブックスに線形代数学関連の解説書・教科書があります。 線型代数学(せんけいだいすうがく、英: linear algebra)とは、線形空間と線形変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連
GLn に対して、 G の k 値点は GLn(k) 内の半単純元あるいはべき単元であるとき、半単純あるいはべき単と定める。(これらの性質は G の忠実表現の取り方に依存しない。)体 k が完全であるとき、k 値点の半単純成分とべき単成分もまた G に属する。すなわち、すべての元 g ∈ G(k) は G(k)
あらゆる線型空間はそれを生成できる線型独立なベクトル集合を1つ以上持つ。言い換えれば、線型結合で空間の全ベクトルを一意に表せるベクトル集合が常に存在する。そしてそれらベクトルの個数は各線形空間で一意に定まる。つまりあらゆる線形空間は「座標系」のような定数個の基本要素の線型結合で必ず表現できる。このように線形空間を特徴づける、線型独立な生成系のことを基底と呼ぶ。
数学における多重線型代数(たじゅうせんけいだいすう、英語: multilinear algebra)とは、線型空間における多重線型性 (multilinearity) を扱う代数学の分野。多重線型性は典型的には線型環における積の構造に現れている。A を K –代数とするとき、自然数 n に対し、A 上で定義された
〔algebra〕
以下、特に断りがない限り平面幾何における例を挙げるものとする。 円 は、ある1点からの距離が等しい全ての点の集合である。また、この距離のことを円の半径と呼び、r で表す。 楕円は、ある2点 P, Q からの距離の和が等しい全ての点の集合である。ここで、基準となる2点 P, Q を焦点と言う。 放物線は、準線 (directrix) と呼ばれる直線
(2016). Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, 1(2), 26. ^ Sanderson, C. (2010). Armadillo: An open
のみに依存する単項式が取れるときに起きる。 代数曲線の研究は既約代数曲線(より小さな曲線の合併として表すことができない曲線)の研究に還元される。双有理同値の違いを除いて、体 F 上の既約曲線全体の成す圏は F 上の一変数代数函数体全体の成す圏に圏同値である。そのような代数函数体は、F 上超越的な元 x を含む F の拡大体