语言
没有数据
通知
无通知
ウィキブックスに線形代数学関連の解説書・教科書があります。 線型代数学(せんけいだいすうがく、英: linear algebra)とは、線形空間と線形変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連
代数幾何学において,代数群(だいすうぐん,英: algebraic group, あるいは群多様体,英: group variety)とは,代数多様体であるような群であって,積と逆元を取る演算がその多様体上の正則写像によって与えられるものである. 圏論のことばでは,代数群は代数多様体の圏における群対象(英語版)である.
数学における多重線型代数(たじゅうせんけいだいすう、英語: multilinear algebra)とは、線型空間における多重線型性 (multilinearity) を扱う代数学の分野。多重線型性は典型的には線型環における積の構造に現れている。A を K –代数とするとき、自然数 n に対し、A 上で定義された
からスカラーへの写像である」(後述)。特に相似不変性を考慮すれば、単位行列がどんな行列の対の交換子とも相似にならないことが分かる。逆に任意のトレース零な正方行列は交換子の線型結合として書ける。さらに言えば、任意のトレース零な正方行列は対角成分が全て零の正方行列とユニタリ同値になる。
と書く。ホップスマッシュ積の巡回ホモロジーはすでに計算されている。スマッシュ積 A # H のことを接合積(接合積ホップ代数)A ⋊ H とも呼ぶ。 上で定義した λ により明らかに F(X) は左ホップ kG-加群代数となる。特に A = F(X) および H = kG に対するスマッシュ積代数 A # kG(簡単に
あらゆる線型空間はそれを生成できる線型独立なベクトル集合を1つ以上持つ。言い換えれば、線型結合で空間の全ベクトルを一意に表せるベクトル集合が常に存在する。そしてそれらベクトルの個数は各線形空間で一意に定まる。つまりあらゆる線形空間は「座標系」のような定数個の基本要素の線型結合で必ず表現できる。このように線形空間を特徴づける、線型独立な生成系のことを基底と呼ぶ。
のみに依存する単項式が取れるときに起きる。 代数曲線の研究は既約代数曲線(より小さな曲線の合併として表すことができない曲線)の研究に還元される。双有理同値の違いを除いて、体 F 上の既約曲線全体の成す圏は F 上の一変数代数函数体全体の成す圏に圏同値である。そのような代数函数体は、F 上超越的な元 x を含む F の拡大体
数学における射影線型群(しゃえいせんけいぐん、英: projective linear group)あるいは射影一般線型群(しゃえいいっぱんせんけいぐん、英: projective general linear group)とは一般線型群の中心による剰余群のことである。 同様に、射影特殊線型群(しゃえいとくしゅせんけいぐん、英: