语言
没有数据
通知
无通知
からスカラーへの写像である」(後述)。特に相似不変性を考慮すれば、単位行列がどんな行列の対の交換子とも相似にならないことが分かる。逆に任意のトレース零な正方行列は交換子の線型結合として書ける。さらに言えば、任意のトレース零な正方行列は対角成分が全て零の正方行列とユニタリ同値になる。
GLn に対して、 G の k 値点は GLn(k) 内の半単純元あるいはべき単元であるとき、半単純あるいはべき単と定める。(これらの性質は G の忠実表現の取り方に依存しない。)体 k が完全であるとき、k 値点の半単純成分とべき単成分もまた G に属する。すなわち、すべての元 g ∈ G(k) は G(k)
あらゆる線型空間はそれを生成できる線型独立なベクトル集合を1つ以上持つ。言い換えれば、線型結合で空間の全ベクトルを一意に表せるベクトル集合が常に存在する。そしてそれらベクトルの個数は各線形空間で一意に定まる。つまりあらゆる線形空間は「座標系」のような定数個の基本要素の線型結合で必ず表現できる。このように線形空間を特徴づける、線型独立な生成系のことを基底と呼ぶ。
数学における多重線型代数(たじゅうせんけいだいすう、英語: multilinear algebra)とは、線型空間における多重線型性 (multilinearity) を扱う代数学の分野。多重線型性は典型的には線型環における積の構造に現れている。A を K –代数とするとき、自然数 n に対し、A 上で定義された
〔algebra〕
(2016). Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, 1(2), 26. ^ Sanderson, C. (2010). Armadillo: An open
のみに依存する単項式が取れるときに起きる。 代数曲線の研究は既約代数曲線(より小さな曲線の合併として表すことができない曲線)の研究に還元される。双有理同値の違いを除いて、体 F 上の既約曲線全体の成す圏は F 上の一変数代数函数体全体の成す圏に圏同値である。そのような代数函数体は、F 上超越的な元 x を含む F の拡大体
代数的データ型(だいすうてきデータがた、英: algebraic data type)とはプログラミング、特に関数型プログラミングや型システムにおいて使われるデータ型である。それぞれの代数的データ型の値には、1個以上のコンストラクタがあり、各コンストラクタには0個以上の引数がある。 代数的データ型