语言
没有数据
通知
无通知
微分積分学における平均値の定理(へいきんちのていり、英: mean-value theorem)または有限増分の定理 (仏: Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が
コーシー–アダマールの定理(コーシー–アダマールのていり、英語: Cauchy–Hadamard theorem)とは、複素解析学の定理の1つであり、フランスの数学者オーギュスタン・ルイ・コーシーとジャック・アダマールにちなんで命名された。 一複素変数 z に関する、以下のような冪級数を考える。 f
コーシー=コワレフスカヤの定理(コーシー=コワレフスカヤのていり、英: Cauchy–Kovalevskaya theorem)とは偏微分方程式の解の存在と一意性についての基礎定理。解析性についての仮定の下、局所解の存在と一意性を保証する。常微分方程式の場合と準線形な偏微分方程式の特別な場合の結果
数学において、コーシーの主値(英: Cauchy principal value)とは、ある種の広義積分に対して定められる値のことである。 コーシーの主値は,特異点の種類によって以下のいずれかで定義される. i) 有限の積分範囲のとき a < x < c で定義される関数 f (x) に対して、a
コーシーの積分定理(コーシーのせきぶんていり、英: Cauchy's integral theorem)は、コーシーの第1定理ともいわれる、オーギュスタン=ルイ・コーシーによって示された、数学、特に微分積分学において、複素平面上のある領域において正則な関数の複素積分についての定理である。
の元であり、互いに素な巡回置換の積で表すことができる。p 個の f を合成してできる写像 fp は恒等写像であり、Sym(S) の単位元であるので、f の表現における各巡回置換の長さは 1 あるいは p である。さらに、f の表現における長さ 1 の巡回置換の個数を s、長さ p の巡回置換の個数をtとすると、
数学のバナッハ空間に関する定理である閉値域の定理(へいちいきのていり、英: closed range theorem)とは、稠密に定義された閉作用素が閉の値域を持つための必要十分条件を与える定理である。ステファン・バナフの1932年の論文 Théorie des opérations linéaires
中間値の定理(ちゅうかんちのていり、英: intermediate value theorem)とは、実数の区間の連結性に関する以下のような存在型の定理である。 中間値の定理 ― 実数直線 R の閉区間 I = [a, b] 上で定義される連続な実数値関数 f が f(a) < f(b) を満たすとき、閉区間