语言
没有数据
通知
无通知
までに写すが、この曲線は水平接線を決して持たない。それはこの曲線が t = 0 において停留点(実は尖点)を持つことによる。 特に g(t) = t を考えれば、ラグランジュの平均値定理を得る。 コーシーの平均値定理はロピタルの法則の証明に利用できる。 ^ Soardi 2007, p. 222. Soardi
数学のバナッハ空間に関する定理である閉値域の定理(へいちいきのていり、英: closed range theorem)とは、稠密に定義された閉作用素が閉の値域を持つための必要十分条件を与える定理である。ステファン・バナフの1932年の論文 Théorie des opérations linéaires
中間値の定理(ちゅうかんちのていり、英: intermediate value theorem)とは、実数の区間の連結性に関する以下のような存在型の定理である。 中間値の定理 ― 実数直線 R の閉区間 I = [a, b] 上で定義される連続な実数値関数 f が f(a) < f(b) を満たすとき、閉区間
〔古くは「へいぎん」とも〕
貸借平均の原理(たいしゃくへいきんのげんり)とは、複式簿記において、仕訳帳や総勘定元帳などの借方の合計と貸方の合計が常に一致するという原理である。 貸借対照表等式および損益計算書等式から導かれる 資産 + 費用 = 負債 + 純資産 + 収益 という等式を根拠としている。 勘定 複式簿記 会計帳簿
初等解析学における最大値・最小値の定理または最大値の定理(さいだいちのていり、英: extreme value theorem; 極値定理)は、実数値函数 f が有界閉区間 [a,b] 上で連続ならば f は最大値および最小値にそれぞれ少なくとも一点で到達することを述べるものである。式で書けば、適当な実数
慣性モーメントが与えられたとき、その軸と平行な任意の軸周りの慣性モーメントや断面二次モーメントを求める定理である。 質量 m の物体がその重心を通る軸 z を中心に回転するようになっているとする。物体はこの軸に対して慣性モーメント Icm を持つ。平行軸の定理は、軸
三平方の定理(さんへいほうのていり) 直角三角形の辺に関する「ピタゴラスの定理」のこと 「三個の平方数の和」で表される数に関する定理のこと このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの