语言
没有数据
通知
无通知
(1)物事を分析して論理的に明らかにすること。 分析。
このような中で、ジャン・ル・ロン・ダランベールは、1743年に出版した『動力学概論』(Traité de Dynamique)において、動力学の問題を解くか少なくとも方程式に表すため、物体の運動の法則を釣り合いの法則に帰着させる方法を提案した。これは、つまり動力学を静力学に還元する試みだった(ダランベールの原理)。ここで、ダランベールの原理は現代的には次のように表される。
数学の解析学の分野における領域(りょういき、英: domain, region)とは、有限次元ベクトル空間の開部分集合で連結なもののことを言う。 例えば偏微分方程式論やソボレフ空間論などにおいて、定義域(domain of definition)の意味で領域 (domain) という語を用いることがあるが、それとは異なる。
解析多様体(英語版)(これは解析函数を含む方程式系の解全体の成す空間として局所的に得られる)を研究する現代的な分野にも「解析幾何学」という同じ名称が与えられているが本項における意味とは異なる。セールのGAGAによれば、この意味での解析幾何学の含む内容は代数幾何学
微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。また、無限次元空間上での微分 (フレシェ微分など) を扱うため、無限次元空間上での微分積分学という捉え方も可能である。 関数解析
代数解析学(だいすうかいせきがく、英語: Algebraic analysis)とは数学の一分野であり、 代数的な手法を用いて解析学を研究する分野のことである。超関数に対する代数的な接近法であり、線形偏微分方程式系の代数的取り扱いを可能にした。 超関数などのような関数の一般化やその性質を調べる複素解
アルゴリズム解析(アルゴリズムかいせき)とは、アルゴリズムの実行に必要とされるリソース(時間や記憶領域)量を見積もることである。多くのアルゴリズムは任意長の入力を受け付けるよう設計されている。アルゴリズムの「効率」や「複雑さ」は一般に、入力長からそのアルゴリズムを実行するのに必要なステップ数(時間複雑性)や記憶領域サイズ(空間複雑性)への関数として表される。
解析と対照的に、物理方程式を多様体上の座標の取り方に独立な形(英語版)で表すことができる。 物理学や工学における応力解析(英語版)、連続体力学、電磁気学、一般相対論など、テンソル解析は多くの実生活的な応用を持つ。 ベクトル解析 行列解析 リッチ計算法(英語版)* 曲線座標系におけるテンソル(英語版)