语言
没有数据
通知
无通知
無条件収束 収束判定法 比較判定法 ダランベールの収束判定法 コーシーの収束判定法 コーシーの冪根判定法 微分積分学 微分法 接線 偏微分 積分法 不定積分 定積分 部分積分 置換積分 広義積分 微分積分学の基本定理 複素解析 代数学の基本定理 コーシー・リーマンの方程式 複素積分 コーシーの積分公式 コーシーの積分定理
(1)物事を分析して論理的に明らかにすること。 分析。
変分法(へんぶんほう、英: Variational method, Calculus of variations)とは、関数を取り値を返す対応である汎関数についての微分にあたる手法を言う。オイラーとラグランジュらによって導入された。 解析力学における重要な方程式は最小作用の原理を元に変分法を用いて導出される。
数学の解析学の分野における領域(りょういき、英: domain, region)とは、有限次元ベクトル空間の開部分集合で連結なもののことを言う。 例えば偏微分方程式論やソボレフ空間論などにおいて、定義域(domain of definition)の意味で領域 (domain) という語を用いることがあるが、それとは異なる。
解析多様体(英語版)(これは解析函数を含む方程式系の解全体の成す空間として局所的に得られる)を研究する現代的な分野にも「解析幾何学」という同じ名称が与えられているが本項における意味とは異なる。セールのGAGAによれば、この意味での解析幾何学の含む内容は代数幾何学
微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。また、無限次元空間上での微分 (フレシェ微分など) を扱うため、無限次元空間上での微分積分学という捉え方も可能である。 関数解析
代数解析学(だいすうかいせきがく、英語: Algebraic analysis)とは数学の一分野であり、 代数的な手法を用いて解析学を研究する分野のことである。超関数に対する代数的な接近法であり、線形偏微分方程式系の代数的取り扱いを可能にした。 超関数などのような関数の一般化やその性質を調べる複素解
// ② } } return T; この場合d[i]=0の場合は①の自乗算の処理のみが行われるが、d[i]=1の場合は①に加え②の掛算の処理も行われる。自乗算と掛算の消費電力が異なることを利用すれば1個の消費電力波形から秘密鍵を導出できてしまう。SPAから秘密鍵を守るには以下の2種類のアルゴリズムが利用される。