语言
没有数据
通知
无通知
無条件収束 収束判定法 比較判定法 ダランベールの収束判定法 コーシーの収束判定法 コーシーの冪根判定法 微分積分学 微分法 接線 偏微分 積分法 不定積分 定積分 部分積分 置換積分 広義積分 微分積分学の基本定理 複素解析 代数学の基本定理 コーシー・リーマンの方程式 複素積分 コーシーの積分公式 コーシーの積分定理
(1)物事を分析して論理的に明らかにすること。 分析。
このような中で、ジャン・ル・ロン・ダランベールは、1743年に出版した『動力学概論』(Traité de Dynamique)において、動力学の問題を解くか少なくとも方程式に表すため、物体の運動の法則を釣り合いの法則に帰着させる方法を提案した。これは、つまり動力学を静力学に還元する試みだった(ダランベールの原理)。ここで、ダランベールの原理は現代的には次のように表される。
光解離領域(こうかいりりょういき、Photodissociation region:PDR)とは、星間空間において、恒星からの紫外線放射によって星間物質(分子ガス)が光解離される領域のこと。Photo dominant regionとも呼ばれた。 Tielens, A. G. G. M. & Hollenbach
(1)ある者が領有し, また勢力下に置く区域。
解析多様体(英語版)(これは解析函数を含む方程式系の解全体の成す空間として局所的に得られる)を研究する現代的な分野にも「解析幾何学」という同じ名称が与えられているが本項における意味とは異なる。セールのGAGAによれば、この意味での解析幾何学の含む内容は代数幾何学
微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。また、無限次元空間上での微分 (フレシェ微分など) を扱うため、無限次元空間上での微分積分学という捉え方も可能である。 関数解析
代数解析学(だいすうかいせきがく、英語: Algebraic analysis)とは数学の一分野であり、 代数的な手法を用いて解析学を研究する分野のことである。超関数に対する代数的な接近法であり、線形偏微分方程式系の代数的取り扱いを可能にした。 超関数などのような関数の一般化やその性質を調べる複素解