语言
没有数据
通知
无通知
数学における部分空間(ぶぶんくうかん、英: subspace)は、ある構造を持った集合 X について、それを空間と呼ぶとき、その構造を保つような X の部分集合あるいは、構造を保つように X に埋め込まれた別の集合 A のことをいう。 部分位相空間: 位相空間論における位相空間の部分空間。 部分線型空間:
数学におけるノルム線型空間(ノルムせんけいくうかん、英: normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ
y となるのは x − y ∈ N であるとき と定める。つまり、x が y と関係を持つのは x に N の適当な元を加えて y にすることができるときである。この定義から、N の任意の元は零ベクトルと同値となり省くことができる。言い換えれば、N に属するすべてのベクトルが零ベクトルの属する同値類に写されるということである。
クリロフ部分空間(クリロフぶぶんくうかん、英語: Krylov subspace)線型代数において、n次正方行列Aとn次ベクトルbによって生成されるr次クリロフ部分空間は、bとAのべき乗の像が張る線型部分空間である。 K r ( A , b ) = span { b , A b , A 2 b
数学における線型位相空間(せんけいいそうくうかん、英語: linear topological space)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像
とは、凸、均衡、併呑かつ閉である集合のことをいう。樽型空間が研究される理由として、バナッハ=シュタインハウスの定理(英語版)の一種がそれらに対して成立することが挙げられる。 樽型空間は Bourbaki (1950) によって考えられた。 半ノルム線型空間における閉単位球は、樽型である。 すべての局所凸
有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型
列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序