语言
没有数据
通知
无通知
m × n 行列の列空間は、m-空間 Km の線型部分空間である。列空間の次元は、その行列の階数と呼ばれる。(整数全体のような)環 K についての行列に対しても、同様に列空間を定義することが出来る。 ある行列の列空間は、対応する線型写像の像あるいは値域である。 K をスカラー体とする。A を、列ベクトル v1
ℓ1 はシューアの性質(英語版)を持つ:すなわち、ℓ1 において弱収束(英語版)する列は、必ず強収束(英語版)もする(Schur 1921)。しかし、無限次元空間上の弱位相は、強位相よりも厳密に弱いため、ℓ1 には弱収束するが強収束しない有向点族が存在する。 ℓp
とは、凸、均衡、併呑かつ閉である集合のことをいう。樽型空間が研究される理由として、バナッハ=シュタインハウスの定理(英語版)の一種がそれらに対して成立することが挙げられる。 樽型空間は Bourbaki (1950) によって考えられた。 半ノルム線型空間における閉単位球は、樽型である。 すべての局所凸
有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型
数学において、位相空間が点列コンパクト(てんれつコンパクト、英: sequentially compact)であるとは、その空間内の任意の点列が収束する部分列を含むことを言う。一般の位相空間においては点列コンパクト性とコンパクト性とは異なる概念であるが、距離空間に限ればこの二つは同値になる。
数学におけるノルム線型空間(ノルムせんけいくうかん、英: normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ
界相空間を初めて考えたのはマッキーで、命名はブルバキによる(フランス語で有界を意味する borné (と位相 topology) に由来)。 任意の集合 X について、X 上の有界集合系あるいは界相有界型[要出典] (bornology) とは、X の部分集合族 B で、 B は
y となるのは x − y ∈ N であるとき と定める。つまり、x が y と関係を持つのは x に N の適当な元を加えて y にすることができるときである。この定義から、N の任意の元は零ベクトルと同値となり省くことができる。言い換えれば、N に属するすべてのベクトルが零ベクトルの属する同値類に写されるということである。