语言
没有数据
通知
无通知
y となるのは x − y ∈ N であるとき と定める。つまり、x が y と関係を持つのは x に N の適当な元を加えて y にすることができるときである。この定義から、N の任意の元は零ベクトルと同値となり省くことができる。言い換えれば、N に属するすべてのベクトルが零ベクトルの属する同値類に写されるということである。
はそのような例である。また任意の無限次元モンテル空間、特にシュヴァルツ超函数論に現れる試験函数としての隆起函数の空間 D(Ω), 急減少函数の空間 S(Ω), 滑らかな函数の空間 E(Ω), コンパクト台付き超函数(ドイツ語版)の空間 E′(Ω), 緩増加超函数の空間 S′(Ω), シュヴァルツ超函数の空間 D′(Ω)
数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分
数学における線型位相空間(せんけいいそうくうかん、英語: linear topological space)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像
解析学において、ノルム (英: norm, 独: Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。
とは、凸、均衡、併呑かつ閉である集合のことをいう。樽型空間が研究される理由として、バナッハ=シュタインハウスの定理(英語版)の一種がそれらに対して成立することが挙げられる。 樽型空間は Bourbaki (1950) によって考えられた。 半ノルム線型空間における閉単位球は、樽型である。 すべての局所凸
有限次元ベクトル空間はすべて核型である (有限次元ベクトル空間上の作用素はすべて核作用素なので). 核型となるバナッハ空間は, 有限次元のものを除いて存在しない.実際にはこれのある種の逆がしばしば成り立つ:もし「自然に現れる」位相ベクトル空間がバナッハ空間でなければ, それが核型となる可能性が大いにある. 核型
列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序