语言
没有数据
通知
无通知
〔数〕 整数の比で表すことのできる数。 整数および分数をあわせて呼ぶ。 有理数は小数で表すと, 有限小数か循環小数のいずれかになる。
として働く数に用いられる。rank(もしくはorder)の和訳語。 行列・線型写像の階数 集合の階数 群の階数(英語版)・アーベル群の階数・自由加群の階数:有限生成アーベル群の基本定理も参照のこと。 コンパクト群・非コンパクト群の分裂階数 (split-rank)、半単純階数 (semisimple-rank) リー群の階数(英語版)
数学における有理関数(ゆうりかんすう、英: rational function)は、二つの多項式をそれぞれ分子と分母に持つ分数として書ける関数の総称である。抽象代数学においては変数と不定元とを区別するので、後者の場合を有理式と呼ぶ。 一変数の場合( x {\displaystyle x} とする)、有理関数は次の形の関数である:
+ 3 z − 1 {\displaystyle f(z)={\frac {z^{3}-2z+1}{z^{5}+3z-1}}} のような有理関数は全て C 上有理型である。また、関数 f ( z ) = exp z z {\displaystyle f(z)={\frac {\exp z}{z}}}
理科と数学。
道理があること。
数学の線型代数学の分野における階数・退化次数の定理(かいすう・たいかじすうのていり、英: rank–nullity theorem)とは、最も簡単な場合、ある行列の階数 (rank) と退化次数 (nullity) の和は、その行列の列の数に等しいということを述べた定理である。次元定理とも呼ばれる。
階差数列(かいさすうれつ、英: progression of differences, sequence of differences)とは、ある数列に対し、隣り合う項の差をとることによってできる新たな数列のことである。数列の規則性が見えにくい場合でも、階差数列を考えることにより元の数列の素性が分かりやすくなる場合がある。