语言
没有数据
通知
无通知
数学における有理関数(ゆうりかんすう、英: rational function)は、二つの多項式をそれぞれ分子と分母に持つ分数として書ける関数の総称である。抽象代数学においては変数と不定元とを区別するので、後者の場合を有理式と呼ぶ。 一変数の場合( x {\displaystyle x} とする)、有理関数は次の形の関数である:
〔数〕 整数の比で表すことのできる数。 整数および分数をあわせて呼ぶ。 有理数は小数で表すと, 有限小数か循環小数のいずれかになる。
レオンチェフ型関数(れおんちぇふがたかんすう、英: The Leontief function)とは、投入要素が互いに完全補完で常に同じ比率の投入が行われる生産関数や効用関数のこと。ワシリー・レオンチェフに因んで名づけられた。 レオンチェフ型生産関数では、生産要素が互いに完全補完(英: Perfect
弾力性は1でなければならないことを示した。 CES型関数が入れ子構造になっている生産関数も部分均衡分析モデルや一般均衡分析モデルで用いられることがある。入れ子構造を導入することで、異なった代替の弾力性を許容することができる。 消費者理論でもCES型効用関数(英: Constant elasticity
関数型プログラミング(かんすうがたプログラミング、英: functional programming)とは、数学的な意味での関数を主に使うプログラミングのスタイルである。 functional programming は、関数プログラミング(かんすうプログラミング)などと訳されることもある。 関数型プログラミング言語(英:
同時測定不可能である。 この時、波動関数には何が起こっているかを説明する。物体の位置を正確に計ろうとする実験とは、演算子 x ^ {\displaystyle \left.{\hat {x}}\right.} に対する固有値を測定する事であり、その測定された瞬間の波動関数は位置
〔数〕 変数の無理式で表される関数。
真理関数(しんりかんすう、英:Truth function) とは、数理論理学において、真理値の各変数の変域と終集合とがそれぞれ『「真な命題」と「偽な命題」のみから成る集合』に等しいような写像である。真理関数は命題関数でもある。 真理関数を定義する為に次の 2 つの記号を用いる。 真な命題を表す記号