语言
没有数据
通知
无通知
+ 3 z − 1 {\displaystyle f(z)={\frac {z^{3}-2z+1}{z^{5}+3z-1}}} のような有理関数は全て C 上有理型である。また、関数 f ( z ) = exp z z {\displaystyle f(z)={\frac {\exp z}{z}}}
〔数〕 整数の比で表すことのできる数。 整数および分数をあわせて呼ぶ。 有理数は小数で表すと, 有限小数か循環小数のいずれかになる。
同時測定不可能である。 この時、波動関数には何が起こっているかを説明する。物体の位置を正確に計ろうとする実験とは、演算子 x ^ {\displaystyle \left.{\hat {x}}\right.} に対する固有値を測定する事であり、その測定された瞬間の波動関数は位置
〔数〕 変数の無理式で表される関数。
真理関数(しんりかんすう、英:Truth function) とは、数理論理学において、真理値の各変数の変域と終集合とがそれぞれ『「真な命題」と「偽な命題」のみから成る集合』に等しいような写像である。真理関数は命題関数でもある。 真理関数を定義する為に次の 2 つの記号を用いる。 真な命題を表す記号
理科と数学。
〔数〕
道理があること。