语言
没有数据
通知
无通知
の3つである。また 7 は素数であるため、7 の素因数は 7 自身のみとなる。素因数のことを素因子(そいんし)、素因数分解のことを素因子分解ということもある。 2つの自然数が互いに素であることと、2つの自然数が共通の素因数を持たないことは同値である。なお 1 は素因数を持たない数であり、したがって 1 は全ての(1
因数定理(いんすうていり、英: factor theorem)とは、多項式の根から元の多項式を因数分解することができるという定理である。因数定理は剰余の定理の特別の場合になっている。 定理 (Ruffini[要検証 – ノート]) 多項式 f(x) が一次式 x − α を因子に持つ必要十分条件は f(α)
− 1) という因数分解の結果を得る。 因数定理を利用する。すなわち f(x) の値を 0 にする x の値(根)を見つける。f(α) = 0 となったとすれば、x − α が f(x) の因数の1つである。 たとえば 2x4 − 5x3 − 8x2 + 17x − 6 を因数分解することを考える。この式に
階数因数分解(かいすういんすうぶんかい、英: rank factorization)あるいは階数分解(rank decomposition)とは、数学の線型代数学の分野において、階数が r {\displaystyle r} のある与えられた m × n {\displaystyle m\times
j)成分が (i, j)余因子である行列(転置をしない)を「余因子行列」と呼ぶ場合もある。随伴行列や随伴作用素とは異なる。 余因子行列により、正則行列の逆行列を具体的に成分表示することができる。 可換環 R 上の n次正方行列 A = (ai,j) の余因子行列とは、(i, j)成分が (j, i)余因子である
数学の線型代数学における余因子展開(よいんしてんかい、英: cofactor expansion)、あるいはピエール・シモン・ラプラスの名に因んでラプラス展開とは、n次正方行列 A の行列式 |A| の、n 個の A の (n − 1)次小行列式の重み付き和としての表示である。余因子展開
複数多項式2次ふるい法 (MPQS, Multiple polynomial quadratic sieve) 数体ふるい法 (NFS, Number field sieve) 一般数体ふるい法 (GNFS, General number field sieve) 特殊数体ふるい法 (SNFS,
(1)起こり。 原因。 もと。