语言
没有数据
通知
无通知
上記のように自乗和の三角形から漏れた数にも、足し算の三角形と興味深い関係がある。即ち 2n - 1 番目の三角数(n 番目の六角数)から 2n 個の連続数の n 個ずつの自乗和の差は、足し算の三角形の1段目から 2n - 1 段目までの総和に等しく、連続三角数の積である。例えば 62 + 72 と 82 + 92 の差60は足し算
正弦、sin(sine) 余弦、cos(cosine) 正接、tan(tangent) 正割、sec(secant) 余割、csc,cosec(cosecant) 余接、cot(cotangent) 特に sin, cos は幾何学的にも解析学的にも良い性質をもっているので、様
三角錐数(さんかくすいすう、triangular pyramidal number)は球を右図のように三角錐の形にならべたとき、そこに含まれる球の総数にあたる自然数である。つまり三角数を1から小さい順に足した数のことである。四面体数(しめんたいすう、tetrahedral number)ともいう。 例:
テイラー級数は滑らかな関数の、冪級数としての表現を与えている。 フーリエ級数は各項を三角関数とする級数による関数の表示を与えている。 調和級数はよく知られた収束しない級数の例である。調和級数が発散する現象はオイラーによる素数の無限性の証明にも利用されている。 ディリクレ級数は調和級数型の級数
2π = … となっている。返す値を1つだけにするために、関数はその主枝(英語版)に制限する。この制限の上で、定義域内の各 x に対して表現 arcsin(x) はその主値と呼ばれるただ1つの値だけを返す。これらの性質はすべての逆三角関数について同様に当てはまる。 主逆関数は以下の表にリストされる。
n ( n + 1 ) = m 2 {\displaystyle {\frac {1}{2}}n(n+1)=m^{2}} である。両辺を8倍して平方完成することにより (2n + 1)2 = 8m2 + 1 となる。x = 2n + 1, y = 2m とおけば、ペル方程式 x2 - 2y2 = 1
)\cdot \mathrm {rect} (\tau -t)\ d\tau \end{aligned}}} これをテント関数(英: tent function)とも呼ぶ。三角形関数は信号処理や通信工学で、理想的信号の表現としてよく使われ、そこからより現実的な信号を引き出すことができるプロトタイプまた
フーリエ級数(フーリエきゅうすう、英語: Fourier series)とは、複雑な周期関数や周期信号を単純な形の周期性をもつ関数の無限和(級数)によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。