语言
没有数据
通知
无通知
正弦、sin(sine) 余弦、cos(cosine) 正接、tan(tangent) 正割、sec(secant) 余割、csc,cosec(cosecant) 余接、cot(cotangent) 特に sin, cos は幾何学的にも解析学的にも良い性質をもっているので、様
三角錐数(さんかくすいすう、triangular pyramidal number)は球を右図のように三角錐の形にならべたとき、そこに含まれる球の総数にあたる自然数である。つまり三角数を1から小さい順に足した数のことである。四面体数(しめんたいすう、tetrahedral number)ともいう。 例:
2π = … となっている。返す値を1つだけにするために、関数はその主枝(英語版)に制限する。この制限の上で、定義域内の各 x に対して表現 arcsin(x) はその主値と呼ばれるただ1つの値だけを返す。これらの性質はすべての逆三角関数について同様に当てはまる。 主逆関数は以下の表にリストされる。
n ( n + 1 ) = m 2 {\displaystyle {\frac {1}{2}}n(n+1)=m^{2}} である。両辺を8倍して平方完成することにより (2n + 1)2 = 8m2 + 1 となる。x = 2n + 1, y = 2m とおけば、ペル方程式 x2 - 2y2 = 1
)\cdot \mathrm {rect} (\tau -t)\ d\tau \end{aligned}}} これをテント関数(英: tent function)とも呼ぶ。三角形関数は信号処理や通信工学で、理想的信号の表現としてよく使われ、そこからより現実的な信号を引き出すことができるプロトタイプまた
姓氏の一。
(1)三つの角をもつ図形。 三角形。
五角数(ごかくすう、pentagonal number)とは、多角数の一種で、正五角形の形に点を図のように並べたとき、図に含まれる点の総数にあたる自然数である。五角数は無数にあり、そのなかでは 1 が最も小さい。3で割ると1余る整数を1から小さい順に足した数と定義してもよい。例:5 (= 1 + 4)、12