语言
没有数据
通知
无通知
正弦、sin(sine) 余弦、cos(cosine) 正接、tan(tangent) 正割、sec(secant) 余割、csc,cosec(cosecant) 余接、cot(cotangent) 特に sin, cos は幾何学的にも解析学的にも良い性質をもっているので、様
2π = … となっている。返す値を1つだけにするために、関数はその主枝(英語版)に制限する。この制限の上で、定義域内の各 x に対して表現 arcsin(x) はその主値と呼ばれるただ1つの値だけを返す。これらの性質はすべての逆三角関数について同様に当てはまる。 主逆関数は以下の表にリストされる。
上記のように自乗和の三角形から漏れた数にも、足し算の三角形と興味深い関係がある。即ち 2n - 1 番目の三角数(n 番目の六角数)から 2n 個の連続数の n 個ずつの自乗和の差は、足し算の三角形の1段目から 2n - 1 段目までの総和に等しく、連続三角数の積である。例えば 62 + 72 と 82 + 92 の差60は足し算
三つの直線で囲まれた平面図形。
⇒ さんかくけい(三角形)
鋭角三角形(えいかくさんかっけい、英: acute‐angled triangle)は、三角形の一種で、最大角が直角 (90°=π/2 rad) よりも小さい図形である。 なお、鋭角三角形では、長辺をc、短辺をa,bとすれば、各辺は c2 < a2 + b2 の関係となり、また外心や垂心が三角形の内部に生ずる。 ポータル 数学
直角三角形(ちょっかくさんかくけい、(英: right triangle)とは、2つの辺が直角をなす三角形である。記号⊿ を使って表すことがある。 直角三角形においては、直角である内角は、他の2つの内角よりも大きくなる。直角三角形の直角以外の2つの角を、直角三角形の鋭角と呼ぶ。直角三角形の2つの鋭角の和は、直角に等しい。
+ b2 の関係となり、また外心や垂心が三角形の外部に生ずる。 鈍角三角形に関して、2辺と鈍角が相等しいならば二つの三角形は合同になる。このとき鈍角は必ずしも2辺を挟む角である必要はない。この条件を、鈍角三角形の合同条件という。 [脚注の使い方] ^ “鈍角三角形の合同条件”. 東大・京大・一直線.