语言
没有数据
通知
无通知
1 ) 2 {\displaystyle {\frac {n^{2}(n+1)}{2}}} である。それゆえに、n番目の五角錐数は、n2とn3の相加平均に等しい。n番目の五角錐数は、n番目の三角数のn倍にもまた等しい。 五角錐数の母関数は x ( 2 x + 1 ) ( x − 1 ) 4 {\displaystyle
多角数(たかくすう、英: polygonal number)とは、正多角形の形に点を並べたときにそこに含まれる点の総数にあたる自然数である。多角形数ともいう。 例えば、10 個の点は このように正三角形の形に並べることができるので 10 は三角数である。また、16 個の点は このように正方形の形に並べることができ、16
上記のように自乗和の三角形から漏れた数にも、足し算の三角形と興味深い関係がある。即ち 2n - 1 番目の三角数(n 番目の六角数)から 2n 個の連続数の n 個ずつの自乗和の差は、足し算の三角形の1段目から 2n - 1 段目までの総和に等しく、連続三角数の積である。例えば 62 + 72 と 82 + 92 の差60は足し算
十角数(じっかくすう、Decagonal number)は、十角形の多角数である。n番目の十角数は、以下の式で与えられる。 D n = 4 n 2 − 3 n . {\displaystyle D_{n}=4n^{2}-3n.} 最初のいくつかの十角数は、次の通りである。 0, 1, 10, 27
九角数(きゅうかくすう、Nonagonal number)は、九角形の多角数である。n番目の九角数は、以下の式で与えられる。 n ( 7 n − 5 ) 2 . {\displaystyle {\frac {n(7n-5)}{2}}.} 最初のいくつかの九角数は、次の通りである。 1, 9, 24,
七角数(ななかくすう、Heptagonal number)とは、多角数の一種で、正七角形の形に点を並べたとき、図に含まれる点の総数にあたる自然数である。七角数は無数にあり、そのなかでは1が最も小さい。n番目の七角数は以下の式によって表すことができる。 5 n 2 − 3 n 2 {\displaystyle
341, 408, 481, 560, 645, 736, 833, 936, 1045, 1160, …(オンライン整数列大辞典の数列 A000567) 八角数は、偶奇性が交互に入れ替わっている。 全ての自然数は高々8個以下の八角数の和で表すことができる(→多角数定理)。例として、15は8個
number)とは多角数の一種で、正六角形の形に点を下図のように並べたとき、図に含まれる点の総数にあたる自然数である。六角数は無数にあり、そのなかでは1が最も小さい。4で割ると1余る整数を1から小さい順に加えた数と定義してもよい。 例:6 = 1 + 5 、15 = 1 + 5 + 9 、120 = 1 + 5 + 9 + 13