语言
没有数据
通知
无通知
本項は三角関数を含む式の原始関数の一覧である。式に指数関数を含むものは指数関数の原始関数の一覧を、さらに完全な原始関数の一覧は、原始関数の一覧を参照のこと。三角積分も参照のこととする。 以下の全ての記述において、a は0でない、実数とする。また、C は積分定数とする。 ∫ sin a x d x
本項は、原始関数の一覧(げんしかんすうのいちらん)である。以下、積分定数は C {\displaystyle C} とする。 ∫ 1 a x + b d x = 1 a ln | a x + b | + C {\displaystyle \int {\frac {1}{ax+b}}\,dx={\frac
2π = … となっている。返す値を1つだけにするために、関数はその主枝(英語版)に制限する。この制限の上で、定義域内の各 x に対して表現 arcsin(x) はその主値と呼ばれるただ1つの値だけを返す。これらの性質はすべての逆三角関数について同様に当てはまる。 主逆関数は以下の表にリストされる。
本項は、無理関数の原始関数の一覧である。さらに完全な原始関数の一覧は、原始関数の一覧を参照のこと。本項で、積分定数は簡便のために省略している。 ∫ r d x = 1 2 ( x r + a 2 ln ( x + r ) ) {\displaystyle \int r\;dx={\frac
プロジェクト 数学 ポータル 数学 逆双曲線関数の原始関数の一覧(ぎゃくそうきょくせんかんすうのせきぶんほうのいちらん)では、逆双曲線関数の原始関数を一覧形式でまとめた。原始関数の一覧も参照のこと。 以下の数式において、定数a は0ではないものとし、C は積分定数とする。 以下の数式はそれぞれ逆三角関数の原始関数の一覧の数式と対応する。
正弦、sin(sine) 余弦、cos(cosine) 正接、tan(tangent) 正割、sec(secant) 余割、csc,cosec(cosecant) 余接、cot(cotangent) 特に sin, cos は幾何学的にも解析学的にも良い性質をもっているので、様
exp(w) の逆関数。 誤差関数: 正規乱数で重要な積分。 ベータ関数: ガンマ関数を用いて表現できる。 アッカーマン関数 (Ackermann function): 計算理論において、原始帰納的でない帰納的関数。 クヌースの矢印表記:巨大数の表示に利用される表記法あるいは関数。アッカーマン関数
}}\end{aligned}}} 以下の式は加法定理などから容易に導くことができる。 正弦関数と余弦関数の三倍角の公式は、元の関数の三次方程式で表すことができる。従って、三次方程式の解を求めることでそれらの三角関数の値を得ることができる。 幾何学的には、三倍角の公式を経由し三角関数の値を求めることは角の