语言
没有数据
通知
无通知
現れる場合、第二種積分方程式と呼ばれる。 既知の関数 f (下記参照)が恒等的に 0 の場合、同次積分方程式と呼ばれ、f が 0 でない場合、非同次積分方程式と呼ばれる。 4種類の積分方程式(同次・非同次方程式をまとめた)の例として以下のように書ける。 ただし ϕ {\displaystyle \phi
でない微分方程式は非線形微分方程式と呼ばれる。 例えば、g(x) を f(x) を含まない既知の関数とすれば、 ( d d x + α ) f ( x ) = g ( x ) {\displaystyle \left({\frac {\mathrm {d} }{\mathrm {d} x}}+\alpha
{\displaystyle k(x,y)} は点 y {\displaystyle y} から点 x {\displaystyle x} への移動確率で、しばしば分散核 (dispersal kernel) と呼ばれる。積分差分方程式は、多くの節足動物や一年生植物を含む単化性(英語版)個体群をモデル化する際に最も
フレドホルム方程式は(以下に定義する)核函数を含む積分方程式で積分の限界が定数であるようなものである。これは積分の限界が変数であるヴォルテラ積分方程式とは形の上で近い関係にある。 非等質 (inhomogeneous) な第一種フレドホルム積分方程式は g ( t ) = ∫ a
数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は f ( t ) = ∫ a t K ( t , s ) x
\mathrm {for} ~\,k=0,1,\dots ,n\right).} 常微分方程式の理論およびその研究を微分方程式論という。あるいはまた関数方程式論の名で微分方程式論を指すこともある。 常微分方程式が d n x d t n + a n − 1 ( t ) d n − 1 x d t
は、単位円板から、内部の点を境界へ押しやるようなジョルダン曲線の弧を持つ単位円板の中への写像へ移すことに注意する。境界に触れている点は s と独立であり、[0,∞) から単位円への連続函数 λ(t) を定義する。κ(t) は λ(t) の複素共役、(もしくは、逆数)で、 κ ( t ) = λ ( t )
重要な非線型方程式には、 流体を記述するナビエ-ストークス方程式 一般相対性理論におけるアインシュタインの場の方程式 非線形波動を記述するKdV方程式・mKdV方程式 (これらの方程式は可積分系でも研究されている) クレローの方程式 非線形シュレディンガー方程式 などがある。 線型偏微分方程式