语言
没有数据
通知
无通知
でない微分方程式は非線形微分方程式と呼ばれる。 例えば、g(x) を f(x) を含まない既知の関数とすれば、 ( d d x + α ) f ( x ) = g ( x ) {\displaystyle \left({\frac {\mathrm {d} }{\mathrm {d} x}}+\alpha
は、単位円板から、内部の点を境界へ押しやるようなジョルダン曲線の弧を持つ単位円板の中への写像へ移すことに注意する。境界に触れている点は s と独立であり、[0,∞) から単位円への連続函数 λ(t) を定義する。κ(t) は λ(t) の複素共役、(もしくは、逆数)で、 κ ( t ) = λ ( t )
重要な非線型方程式には、 流体を記述するナビエ-ストークス方程式 一般相対性理論におけるアインシュタインの場の方程式 非線形波動を記述するKdV方程式・mKdV方程式 (これらの方程式は可積分系でも研究されている) クレローの方程式 非線形シュレディンガー方程式 などがある。 線型偏微分方程式
} ヒル微分方程式の特別な場合として重要なものには、マシュー方程式(n = 0, 1 に対応する項のみが含まれている場合)やマイスナー方程式などがある。 ヒル微分方程式は、周期微分方程式の理解に役立つ重要な例の一つである。f(t) の正確な形状に依存して、ヒル微分方程式
数学において積分微分方程式(せきぶんびぶんほうていしき、英: integro-differential equation)とは、ある函数の積分と微分のいずれも含むような方程式のことを言う。 一般的な一階線型の積分微分方程式は、次のような形状を持つ。 d d x u ( x ) + ∫ x 0 x f
80-158. ^ Jimbo, M., Miwa, T., & Ueno, K. (1981). Monodromy preserving deformation of linear ordinary differential equations with rational coefficients:
の場合の線型微分方程式は(もとの方程式に属する)斉次あるいは同次な (homogeneous)方程式と呼ばれる。s1 = d + s2 であることを考えれば線型微分方程式 Ly = b のすべての解は Ly = b の特殊解と、元の方程式に対応する斉次方程式 L y = 0 {\displaystyle Ly=0} の解
どちらも、確率微分方程式に対応する積分方程式の解となる確率過程 Xt の存在を要件とする。両者の違いは、基礎となる確率空間 (Ω, F, P) にある。弱解とは、確率積分方程式を満たす確率空間と確率過程をいい、強解は、与えられた確率空間の上で定義され、確率積分方程式を満たす確率過程をいう。 以下の確率微分方程式、