语言
没有数据
通知
无通知
i:虚数単位(自乗すると −1 となる数) π:円周率(円の直径に対する周の比率) である。 式の名はレオンハルト・オイラーに因る。 オイラーの等式は、その数学的な美によって特筆すべきものと多くの人に認識されている。 この等式は次の5つの基本的な数学定数を含んでいる。 1:乗法に関する単位元 0:加法に関する単位元、すなわち零元
の複素数に等しい。 オイラーの公式は、複素解析をはじめとする数学の様々な分野や、電気工学・物理学などで現れる微分方程式の解析において重要である。物理学者のリチャード・P・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べている。 この公式の
数学において、オイラーの和公式(オイラーのわこうしき、オイラー・マクローリンの公式、英: Euler–Maclaurin formula)は1735年頃オイラーとマクローリンにより独立に発見された級数の和を与える公式である。この公式は収束の遅い無限級数の和を求めるときに便利であるが、 f ( x )
オイラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、英: Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単にラグランジュ方程式、またはラグランジュの運動方程式
力学において、オイラーの運動方程式(オイラーのうんどうほうていしき)とは剛体の回転運動を表す式である。 一般に、トルク Nと角運動量 L の関係は、剛体の回転中心、または剛体の重心を原点とする慣性系においては次のような表式となる。 N = d L d t {\displaystyle {\boldsymbol
数論、組合せ論におけるオイラーの分割恒等式(オイラーのぶんかつこうとうしき)は、自然数(正の整数)を「互いに異なる自然数に分割する方法の個数」(distinct partition; 異分割) と「奇数の自然数に分割する方法の個数」(odd partotion; 奇分割) が等しいことを示す恒等式である。
オイラー路(オイラーろ、英: Eulerian trail)とは、グラフの全ての辺を通る路のこと。また全ての辺をちょうど1度だけ通る閉路は、オイラー閉路(オイラーへいろ、英: Euler circuit)という。これらの名称は1736年にこれらを含むグラフの特徴づけを与えたレオンハルト・オイラーにちなむ。
オイラー積(オイラーせき、英: Euler product)はディリクレ級数を素数に関する総乗の形で表した無限積である。ディリクレ級数の一種のリーマンのゼータ関数についてこの無限積が成り立つことを証明した18世紀の数学者レオンハルト・オイラーの名前にちなむ。ディリクレ級数は以下の式の左辺で定義され、右辺がオイラー積表示である。