语言
没有数据
通知
无通知
オイラー積(オイラーせき、英: Euler product)はディリクレ級数を素数に関する総乗の形で表した無限積である。ディリクレ級数の一種のリーマンのゼータ関数についてこの無限積が成り立つことを証明した18世紀の数学者レオンハルト・オイラーの名前にちなむ。ディリクレ級数は以下の式の左辺で定義され、右辺がオイラー積表示である。
オイラー角(オイラーかく、英: Euler angles)とは、三次元ユークリッド空間中の2つの直交座標系の関係を表現する方法の一つである。 レオンハルト・オイラーにより考案された。 剛体に固定された座標系を考えることで、剛体の姿勢を表すことができる。 オイラー角は3つの角度の組で表される。 一方の座標系を
オイラー線(オイラーせん、英: Euler line )は、三角形の外心・重心・垂心を通る直線であり、その名称は存在を見出した数学者レオンハルト・オイラーに由来している。オイラー線は正三角形以外の全ての三角形に対して定義できる。三角形におけるオイラー線の概念は、四角形や三角錐などの図形にも拡張されている。
オイラー円 オイラー路(オイラーグラフ、準オイラーグラフ) オイラー線 オイラー図 オイラーのφ関数 オイラーの和公式 オイラー積 オイラーの分割恒等式 オイラーの五角数定理 ネイピア数(オイラー数と呼ばれることがある) オイラー数 オイラーの定数 オイラー標数 オイラー素数 オイラー (小惑星) O'Connor
オイラー数は、双曲線余割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: sech z = 2 e z + e − z = ∑ k = 0 ∞ E k k ! z k {\displaystyle \operatorname {sech} \,z={\frac
オイラー法(オイラーほう、英: Euler method)とは、常微分方程式の数値解法の一つである。この方法は、数学的に理解しやすく、プログラム的にも簡単なので、数値解析の初歩的な学習問題としてよく取りあげられる。 常微分方程式とその初期値問題を次のように定める。 y ′ = f ( t , y )
オイラー図(オイラーず、英語: Euler diagram)は、集合の相互関係を表す図。 考案者であるレオンハルト・オイラーの名をとってオイラー図と名付けられた。ベン図と似ているが、ベン図とは異なり、各集合を表す円が必ずしも重なっている必要はない(右図参照)。 レオンハルト・オイラー ベン図 存在グラフ
オイラー標数に等しくなる。特性数の言葉では、オイラー標数はオイラー類に対応する特性数である。 このように、オイラー類は接バンドル以外へのオイラー標数の一般化であり、ベクトルバンドル以外の特性類の原型となった。それぞれの最高次数の特性類は、次のようにオイラー類である。 2 による剰余をとることは、写像