语言
没有数据
通知
无通知
価や為替の変動、ブラウン運動などの粒子のランダムな運動を数学的に記述する模型(モデル)として利用している。不規則過程(英語: random process)とも言う。 確率過程からのサンプリングで得られる系列(実現値)を見本関数(見本過程、経路/パス)という。 まず、時間のように一次元的なパラメタによって変化する確率変数を考えよう。
両流体の温度差 (K) である。 熱通過率はまた、熱貫流率、総括伝熱係数などと呼ばれることもある。 図のように固体隔壁を介して h と c の両流体間で熱が移動するとする。 流体 h と壁左面間は対流熱伝達で、壁面内は熱伝導で、 壁右面と流体 c 間は対流熱伝達で熱が移動するので、 伝熱量 Q は次式で表される。
〔probability〕
事象を根元事象または単純事象 (elementary event / simple event) 、複数の根元事象の和集合を複合事象 (compound event) という。つまり、 F {\displaystyle {\mathcal {F}}} は、根元事象から生成される最小の完全加法族となっている。
外確率(がいかくりつ、英: exotic probability)とは、[0, 1]の範囲の外側を扱う確率論の一分野である。 外確率に関する論文の主な著者はサウル・ヨッセフである。彼によると、確率値として有効な数は、実数、複素数、四元数である。 ヨッセフは外確率
頻度主義者にとって、仮説は(真か偽かの)命題であり、頻度主義者にとっての仮説の確率は0か1であるが、ベイズ統計学では、真理値が不確かであれば、仮説に割り当てられる確率も0から1の範囲になる。 ベイズ確率(およびベイズ統計学)は、ベイズの定理の特別な場合を証明したトーマス・ベイズにちなんだ命名(実際の命名は1950
大型のハリケーン」のように、災害の規模を表す尺度としても利用される。ある値を超える確率を表す場合には超過確率年(ちょうかかくりつねん)や超過確率(ちょうかかくりつ)、年超過確率(ねんちょうかかくりつ)と呼ばれる。 確率年は、事象が1回発生してから次に発生するまでの期間の期待値として定義される。あるい
(1)ある地点を通り過ぎること。