语言
没有数据
通知
无通知
事象を根元事象または単純事象 (elementary event / simple event) 、複数の根元事象の和集合を複合事象 (compound event) という。つまり、 F {\displaystyle {\mathcal {F}}} は、根元事象から生成される最小の完全加法族となっている。
外確率(がいかくりつ、英: exotic probability)とは、[0, 1]の範囲の外側を扱う確率論の一分野である。 外確率に関する論文の主な著者はサウル・ヨッセフである。彼によると、確率値として有効な数は、実数、複素数、四元数である。 ヨッセフは外確率
頻度主義者にとって、仮説は(真か偽かの)命題であり、頻度主義者にとっての仮説の確率は0か1であるが、ベイズ統計学では、真理値が不確かであれば、仮説に割り当てられる確率も0から1の範囲になる。 ベイズ確率(およびベイズ統計学)は、ベイズの定理の特別な場合を証明したトーマス・ベイズにちなんだ命名(実際の命名は1950
大型のハリケーン」のように、災害の規模を表す尺度としても利用される。ある値を超える確率を表す場合には超過確率年(ちょうかかくりつねん)や超過確率(ちょうかかくりつ)、年超過確率(ねんちょうかかくりつ)と呼ばれる。 確率年は、事象が1回発生してから次に発生するまでの期間の期待値として定義される。あるい
確率分布(かくりつぶんぷ、英: probability distribution)は、確率変数に対して、各々の値をとる確率全体を表したものである。日本産業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。 例えば、「サイコロ2個を振ったときの出た目の和」は確率変数である。この確率変数
analysis)において、確率測度は配列の中にアミノ酸がある可能性によって定義されることもある。 ボレル測度 ファジー測度(英語版)(Fuzzy measure) ハール測度 リスク中立測度 ^ a b A course in mathematics for students of physics
Malliavinによる人類史上初の無限次元解析的視点が確率論の中で厳密に展開されることにより, 伊藤解析は大幅にその裾を拡げ, 他の数学分野を巻き込んで浸透した。伊藤解析は, Malliavin解析(無限次元解析)と総称して, 確率解析と呼ばれることもある。詳細は, Malliavin, Kusuoka-Stroock
改正で下限が500分の1まで大きく下げられたことで、改正直後から「CRフィーバー大ヤマト」などで大当たり確率500分の1近い機種が登場した。ただ、射幸性が強くなる懸念から翌2005年には下限が再び400分の1に引き上げられ、暫くはこの状況が続いた。ただ、再び「のめりこみ」等を懸念する声が強まったこ