语言
没有数据
通知
无通知
確率過程量子化(かくりつかていりょうしか)とは、量子力学を確率過程として定式化する方法である。1966年にエドワード・ネルソン(英語版)によって導入された。 1981年にジョルジョ・パリージとYong-Shi Wuは、ネルソンとは異なる手法を提唱した。これはランジュバン方程式を用いて記述した確率過程
〔probability〕
物事が変化・発展していくみちすじ。 プロセス。
事象を根元事象または単純事象 (elementary event / simple event) 、複数の根元事象の和集合を複合事象 (compound event) という。つまり、 F {\displaystyle {\mathcal {F}}} は、根元事象から生成される最小の完全加法族となっている。
外確率(がいかくりつ、英: exotic probability)とは、[0, 1]の範囲の外側を扱う確率論の一分野である。 外確率に関する論文の主な著者はサウル・ヨッセフである。彼によると、確率値として有効な数は、実数、複素数、四元数である。 ヨッセフは外確率
頻度主義者にとって、仮説は(真か偽かの)命題であり、頻度主義者にとっての仮説の確率は0か1であるが、ベイズ統計学では、真理値が不確かであれば、仮説に割り当てられる確率も0から1の範囲になる。 ベイズ確率(およびベイズ統計学)は、ベイズの定理の特別な場合を証明したトーマス・ベイズにちなんだ命名(実際の命名は1950
大型のハリケーン」のように、災害の規模を表す尺度としても利用される。ある値を超える確率を表す場合には超過確率年(ちょうかかくりつねん)や超過確率(ちょうかかくりつ)、年超過確率(ねんちょうかかくりつ)と呼ばれる。 確率年は、事象が1回発生してから次に発生するまでの期間の期待値として定義される。あるい
どちらも、確率微分方程式に対応する積分方程式の解となる確率過程 Xt の存在を要件とする。両者の違いは、基礎となる確率空間 (Ω, F, P) にある。弱解とは、確率積分方程式を満たす確率空間と確率過程をいい、強解は、与えられた確率空間の上で定義され、確率積分方程式を満たす確率過程をいう。 以下の確率微分方程式、