语言
没有数据
通知
无通知
を助変数(通常はparameterの訳語)と称することもあるので更に注意が必要である。 楕円の弧長など、三次式、或いは四次式の平方根の積分や五次以上の高次方程式は楕円積分に帰着し、初等的に求まらないことが知られている。 最初に示したものはヤコービの標準形であるが、ヤコービの標準形において積分変数 t
数理論理学のとくにモデル理論、あるいは普遍代数学における超積(ちょうせき、英: ultraproduct)は、同じシグネチャ(英語版)の数学的構造からなる族の直積の適当な商構造をとる数学的構成を言う。任意の直積因子が等しい特別の場合として、超冪(ちょうべき、英: ultrapower)がある。
〔integral〕 (名)
体積積分(たいせきせきぶん、英: volume integral)とは、数学、特に多変数解析における用語で、3次元領域上の積分を指す。すなわち、多重積分の特殊な例である。積分の記号として∰が用いられる。 体積積分は特に物理学において多くの応用がなされており、例えば流束密度を求めることに利用される。 体積積分は直交座標系における関数
部分積分(ぶぶんせきぶん、英: Integration by parts)とは、微分積分学・解析学における関数の積の積分に関する定理であり、積の積分をより計算が容易な積分に変形するために頻繁に使われる手法である。 具体的には、2つの微分可能な関数 u ( x ) {\textstyle u(x)}
積分器(せきぶんき、Integrator)とは、積分の計算に用いる機器のこと。 最も単純な積分器の例として、水の流量をある時間間隔で積分するには、水流を何らかの容器に指定された時間だけ溜め、その量を測ればよい。逆に一定の流量を持つ水流を利用すれば、経過した時間を測定できる。 電子工学での積分
積分(へいろせきぶん)あるいは周回積分(しゅうかいせきぶん)と呼び、専用の積分記号 ∮ が使われることもある。周回積分法は複素解析における重要な手法の一つである。 線積分の対象となる函数は、スカラー場やベクトル場などとして与える。線積分
ガウス積分(ガウスせきぶん、英: Gaussian integral)あるいはオイラー=ポアソン積分(オイラーポアソンせきぶん、英: Euler–Poisson integral)はガウス関数 exp(−x2) の実数全体での広義積分: ∫ − ∞ + ∞ e − x 2 d x = π {\displaystyle