语言
没有数据
通知
无通知
数学において,積分曲線(せきぶんきょくせん,英: integral curve)は常微分方程式あるいは方程式系の特定の解を表すパラメトリック曲線である.微分方程式がベクトル場あるいは slope field(英語版) として表されているとき,対応する積分曲線は各点で場に接する. 積分
〔integral〕 (名)
体積積分(たいせきせきぶん、英: volume integral)とは、数学、特に多変数解析における用語で、3次元領域上の積分を指す。すなわち、多重積分の特殊な例である。積分の記号として∰が用いられる。 体積積分は特に物理学において多くの応用がなされており、例えば流束密度を求めることに利用される。 体積積分は直交座標系における関数
複素解析における線積分(せんせきぶん、英: line integral)とは、複素平面内の道に沿った積分であり、特に道がジョルダン曲線の場合の線積分を周回積分(しゅうかいせきぶん、英: contour integral)ということがある。 線積分は複素解析の手法である留数計算と密接に関連している。 線積分
部分積分(ぶぶんせきぶん、英: Integration by parts)とは、微分積分学・解析学における関数の積の積分に関する定理であり、積の積分をより計算が容易な積分に変形するために頻繁に使われる手法である。 具体的には、2つの微分可能な関数 u ( x ) {\textstyle u(x)}
積分器(せきぶんき、Integrator)とは、積分の計算に用いる機器のこと。 最も単純な積分器の例として、水の流量をある時間間隔で積分するには、水流を何らかの容器に指定された時間だけ溜め、その量を測ればよい。逆に一定の流量を持つ水流を利用すれば、経過した時間を測定できる。 電子工学での積分
ガウス積分(ガウスせきぶん、英: Gaussian integral)あるいはオイラー=ポアソン積分(オイラーポアソンせきぶん、英: Euler–Poisson integral)はガウス関数 exp(−x2) の実数全体での広義積分: ∫ − ∞ + ∞ e − x 2 d x = π {\displaystyle
{\partial S}{\partial v}}\right\vert \,du\,dv} を曲面 S = S(u, v) の u, v に関する面積要素あるいは面素と呼ぶ。 ここで、 | ∂ S ∂ u × ∂ S ∂ v | 2 = | ∂ y ∂ u ∂ y ∂ v ∂ z ∂ u ∂ z ∂