语言
没有数据
通知
无通知
〔数〕
抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a
数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、英: irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表
として書けるということである。位相空間が既約 (irreducible)(あるいは hyperconnected)であるとは、それが可約でないということである。同じことだが、X のすべての空でない開部分集合は稠密である、あるいは任意の2つの空でない開集合は空でない共通部分をもつ。 位相空間 X の部分集合 F が既約あるいは可約であるとは、F
を満たすとき既約であるという。そうでないとき可約であるという。 元々、整数係数多項式(有理数係数多項式) f(x) が、2 つの1次以上の整数係数多項式(有理数係数多項式) g(x),h(x) の積として因数分解できる時、すなわち f(x) = g(x) h(x) の形にできることを可約、そうでないときを既約
抽象代数学において、加群が直既約(ちょくきやく、英: indecomposable)であるとは、その加群が0でなく、2つの0でない部分加群の直和として書けないということである。直既約でない加群は直可約(ちょくかやく、英: decomposable)と言う。 直既約は単純(既約)よりも弱い概念である。加群
位相幾何学において、既約空間(きやくくうかん、英: irreducible space, hyperconnected space)とは、空でない位相空間であって、2つの真閉部分集合に分解されない(すなわち和集合として書けない)ようなものである。この空間はとりわけ既約性が基本的な位相的性質の1つである代数幾何学において現れて役に立つ。
[・・・列名n 列nデータ型,] CONSTRAINT 制約名 UNIQUE (列名1,列名2,・・) ); 「CONSTRAINT 制約名」の指定は任意である。 ALTER TABLEステートメントを使うこともできる。 実体完全性 候補キー スーパーキー 主キー NOT NULL制約 CHECK制約