语言
没有数据
通知
无通知
本節では、そうしたプラスアルファの性質のうち代表的なものを紹介する。 分離公理とは、位相空間 X 上の2つの対象(点や閉集合)を開集合により「分離」(separate)する事を示す一連の公理、もしくはそこから派生した公理である。 代表的な分離公理としてハウスドルフの分離公理があり、これは以下のような公理であり、前述のようにこれは有向点族の収束の一意性と同値である。
ウィキブックスに位相空間論関連の解説書・教科書があります。 位相空間論(いそうくうかんろん)、もしくは一般位相空間論(いっぱんいそうくうかんろん英: general topology、point-set topology)とは、位相空間の性質やその上に定義される構造を研究対象とする数学の分野である。 一般位相空間
位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、英: identification space)または商位相空間(しょういそうくうかん、英: quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing
〔数〕
数学における線型位相空間(せんけいいそうくうかん、英語: linear topological space)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像
となることである。 x を位相空間とするとき、以下は同値。 X はネーター的(すなわち閉部分集合について降鎖条件を満たす)。 X の閉部分集合の空でない任意の族は包含関係に対して極小元をもつ。 X は開部分集合について昇鎖条件を満たす。 X の開部分集合の空でない任意の族は包含関係に対して極大元をもつ。 X の任意の部分集合はコンパクト。
における圏論的直積は、台集合の集合論的直積に直積位相を入れたもので与えられる。圏論的直和は位相空間の位相的直和で与えられる。 Top における射の対の等化子は、集合論的な等化子に相対位相を入れたもので与えられる。双対的に、余等化子は集合論的余等化子に商位相を入れたもので与えられる。 Top
抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a