语言
没有数据
通知
无通知
〔数〕
抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a
抽象代数学における直和(ちょくわ、英: direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念である直積(英語版)と対照をなす。
加群(かぐん) 環上の加群 (R-module) その特別な場合であるアーベル群 (abelian group) も単に加群と呼ぶ場合がある。 リー環上の加群 (g-module) 群上の加群 (G-module) D加群 微分加群 このページは数学の曖昧さ回避のためのページです。一つの語句が複数の
数学のとくに群あるいは多元環の表現論における(代数的構造の)既約表現(きやくひょうげん、英: irreducible representation; irrep) とは、真の閉部分表現を持たない非零表現を言う。 複素内積ベクトル空間 V 上の任意の有限次元ユニタリ表現は、既約表現の直和である。既約表
として書けるということである。位相空間が既約 (irreducible)(あるいは hyperconnected)であるとは、それが可約でないということである。同じことだが、X のすべての空でない開部分集合は稠密である、あるいは任意の2つの空でない開集合は空でない共通部分をもつ。 位相空間 X の部分集合 F が既約あるいは可約であるとは、F
数学における簡約群(かんやくぐん、英: reductive group)とは冪単根基が自明となる代数閉体上の代数群のことである。代数的トーラスや一般線形群など任意の半単純代数群は簡約となる。一般の代数体上の場合には、代数閉包上で冪単根基が自明となるような滑らかなアフィン代数群を簡約
加法群 (additive group) は群演算をある意味で加法と考えることのできる群である。加法群は通常アーベル群であり、その二項演算を記号 + を使って書くのが一般的である。 この用語は複数の演算をもった構造で他の演算を忘れることによって得られる構造を明示するために広く使われる。例えば、整数