语言
没有数据
通知
无通知
実数値関数(じっすうちかんすう、英: real-valued function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。特に、定義域も実数の部分集合であるもの、すなわち実変数の実数値関数を実関数(じつかんすう、英: real function)という。
は体の構造を持っており、実数を係数とした多項式や実数の拡大体を考えることができる。ここで実数が極大順序体であることにより実数係数の多項式は 3 次以上なら既約にならない。したがって R の有限次元拡大になっている可換体は R 自身と複素数体 C しかなく、可換性を外してもほかの有限次拡大体は四元数体
〔数〕
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数の枝という。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式
数学の分野における定数関数(ていすうかんすう、英: constant function; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x) = 4 はすべての値を 4 へと写すため、定数関数である。
準完全数は存在するかどうか未だに分かっていない。準完全数が存在するならば、それは奇数の平方数でなければならないことが知られている。 σ(n) = kn (k:整数) を満たす n を k-倍完全数という。例えば 120 は3倍完全数である。現在知られている倍積完全数は n = 1(このとき、k