语言
没有数据
通知
无通知
実数値関数(じっすうちかんすう、英: real-valued function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。特に、定義域も実数の部分集合であるもの、すなわち実変数の実数値関数を実関数(じつかんすう、英: real function)という。
数を代表する文字がその値をいろいろとり得るとき, その文字をいう。 x・y・z などで示されることが多い。
一般に(無限個の場合をも含む)任意個数の変数を扱う場合には、用意する記号の都合上、添字記法に従う方が支配的である。 ^ 野村龍太郎,下山秀久編『工學字彙』(工學恊會, 1886)https://dl.ndl.go.jp/info:ndljp/pid/1678148/79 アリティ 族 (数学) 媒介変数 自由変数と束縛変数 変数 (プログラミング)
は体の構造を持っており、実数を係数とした多項式や実数の拡大体を考えることができる。ここで実数が極大順序体であることにより実数係数の多項式は 3 次以上なら既約にならない。したがって R の有限次元拡大になっている可換体は R 自身と複素数体 C しかなく、可換性を外してもほかの有限次拡大体は四元数体
〔数〕
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数の枝という。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式