语言
没有数据
通知
无通知
数学、特に抽象代数学の一分野である環論における可換環(かかんかん、英: commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解環 ⊃ 単項イデアル整域
可換環にも適用できる。 可換でない環の例をいくつか挙げる: 実数上の n 次全行列環、ただし n > 1。 ハミルトンの四元数。 可換でない群と零環でない環から作られる任意の群環 幾何学から生じる可除環を始まりとして、非可換環の研究は現代代数学の主要な分野に成長している。非可換環
環境決定論で考えれば、熱帯・亜熱帯を起源とする作物のイネの栽培が、日本では寒冷で冬季に積雪のある東北地方や北陸地方で盛んなのは、不思議な現象である。これは保温折衷苗代の開発、耐寒性のある品種の導入、肥料や農薬などの工夫といった自然環境の克服の努力、三大都市圏から隔絶され、ほかの商品作物がなかったこと、農地改革
環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。 可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論
×) は群であり、乗法群と呼ばれる。K の乗法群をしばしば K× とも記し、Gm(K) と記されることもある。体 K の乗法群の任意の有限部分群は巡回群である。 体の元の濃度を位数といい、有限な位数を持つ体を有限体と呼び、そうでない体を無限体と呼ぶ。有限斜体は常に可換体である(ウェダバーンの小定理)。
イデアルである。 主イデアル 単項生成なイデアル。 有限生成イデアル 加群として有限生成なイデアル。 原始イデアル 左単純加群の零化域を左原始イデアルと呼ぶ。右原始イデアルも同様。しかしその名称にも拘らず、左または右原始イデアルは実は常に両側イデアルになる。原始イデアルは素イデアル
環境論(かんきょうろん)は、人文地理学の研究テーマの1つで、自然環境と人間との関係を考察する。一般に環境決定論と環境可能論の2つが挙げられる。このほか、環境認知論や環境改変の視点も扱われる。 環境決定論は、自然環境が人間活動を規定するという考え方である。1930年代までのアメリカ合衆国での地理学で
図式追跡(diagram chasing, diagram chase)とは、特にホモロジー代数において用いられる数学的証明の手法である。可換図式が与えられると、図式追跡による証明は、単射や全射あるいは完全列といった図式の性質の形式的な使用を伴う。三段論法が構成され、図式