语言
没有数据
通知
无通知
数学、特に抽象代数学の一分野である環論における可換環(かかんかん、英: commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解環 ⊃ 単項イデアル整域
図式追跡(diagram chasing, diagram chase)とは、特にホモロジー代数において用いられる数学的証明の手法である。可換図式が与えられると、図式追跡による証明は、単射や全射あるいは完全列といった図式の性質の形式的な使用を伴う。三段論法が構成され、図式
可換環論(かかんかんろん、英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。 イデアルの概念がリヒャルト・デーデキントによって1870年代に導入されて、以後
可換環にも適用できる。 可換でない環の例をいくつか挙げる: 実数上の n 次全行列環、ただし n > 1。 ハミルトンの四元数。 可換でない群と零環でない環から作られる任意の群環 幾何学から生じる可除環を始まりとして、非可換環の研究は現代代数学の主要な分野に成長している。非可換環
なるから、したがってそれ自身非可換な域を成す。 1 より大きい次数の行列環は零因子(特に冪零元)を持つから域を成さない。例えば、行列単位 E12 の自乗は零行列になる。 K 上のベクトル空間のテンソル代数(つまり体 K 上の非可換多項式環)K⟨x1, …, xn⟩ が域となることは、非可換単項式上の順序を用いて証明できる。
数学における非可換幾何(ひかかんきか、noncommutative geometry)とは可換性が成り立たない(「積」について xy と yx が一致しない)ような代数構造に対する空間的・幾何学的な解釈を研究する分野である。通常の幾何学では様々な関数の積に関して可換
(1)それでよいとすること。
の元である。 最後の3つの条件は群の定義と類似している。関数は S 上大域的に定義されていないから Γ が群であるとは限らないことに注意しよう。例えば、Rn 上のすべての局所的な Ck 級微分同相写像からなる集まりは擬群をなす。Cn の開集合の間のすべての双正則写像は擬群をなす。さらなる例: Rn