语言
没有数据
通知
无通知
数論における乗法的関数(じょうほうてきかんすう、英: multiplicative function)とは、正の整数 n の数論的関数 f(n) であって、f(1) = 1 であり、a と b が互いに素であるならば常に f(ab) = f(a) f(b) が成り立つことである。さらに、f(n) が、任意のa
乗法論である。 特殊関数の理論として、そのような楕円函数や多変数複素解析函数のアーベル函数は、大きな対称性をもつことからその関数が多くの等式をみたすことがいえる。特別な点では具体的に計算可能な特殊値を持つ。また虚数乗法は代数的整数論の中心的なテーマであり、円分体の理論をより広く拡張する事を可能にする。
(1)掛け算で, 掛ける方の数。 a×b の b。
グリーン関数法 グリーン関数を用いた微分方程式の解法。 グリーン関数 グリーン関数 (多体理論) 工学分野で使用される数値解析手法。 バンド計算の一手法であるKKR法の別名。 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にし
逆関数法(ぎゃくかんすうほう、英: inversion method, inverse transform method)とは、累積分布関数の逆関数を用いて、標準一様分布に従う確率変数から、所望の分布に従う確率変数を生成させる方法。逆関数サンプリング法(ぎゃくかんすうサンプリングほう、英: inverse
掛け算。
〔数〕
power)とは、ある数値 n の5乗となる数値、すなわち、底(英語版)を n 、冪指数を 5 とする冪乗( n5 = n × n × n × n × n )である。 数値 n の5乗は、n の4乗に n 自体を掛けたものに等しく、また、n の3乗に n の2乗を掛けたものに等しい。 自然数の5乗を小さい順に列記すると、次のようになる。