语言
没有数据
通知
无通知
のオイラー積の類似によって定義される。ここに、積はスキーム X の全ての閉点 x を渡るものとする。同じことであるが、積はその点での剰余体が有限である全ての点を渡るものとする。剰余体の点の数を N(x) で表す。 例えば、X を q 個の元を持つ有限体のスペクトルとすると、 ζ X ( s ) = 1 1 −
フルヴィッツのゼータ函数 (Hurwitz zeta function) はゼータ函数の一種で、名前はアドルフ・フルヴィッツに因む。フルヴィッツのゼータ函数は、Re(s) > 1 なる s と Re(q) > 0 なる q の 2 つの複素数に対して、形式的に以下のように定義される。 ζ ( s ,
発散する可能性を持つ級数 a1 + a2 + .... の和を定義するのに、ゼータ函数正規化と呼ばれる和を取る方法がいくつかある。 一つの方法として、(無限級数の)ゼータ正規化された和を、ζA(−1) が定義できるならばその値で定義する.ここで、ゼータ函数は、Re(s) が大きな数に対して次の和が収束するならばその
の特性多項式の項で再現できる。ここの Frob(p) は p に対するフロベニウス元である。悪い還元をもつ素数 p では、ρ が p に対する惰性群 I(p) 上非自明な作用をもつ。これらの素数では、惰性群が自明表現(英語版)として作用するような表現 ρ の最も大きな商をとることによってオイラー因子をさだめる。このようにして、Z(s)
、作用素がコンパクトリーマン多様体のラプラシアンの場合の例である。 また、この考え方は、ゼータ函数正規化や解析的トーションに適用される。 さらに、代数幾何学的に一般化された熱核の方法とともに、作用素のゼータ函数は、アラケロフ理論(英語版)の最も重要な動機の一つになっている。 ^ Lapidus &
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)