语言
没有数据
通知
无通知
-函数への分解を起こす。 アルティンのL-函数 L(ρ,s) は L(ρ*, 1 − s) との函数等式を満たす。ここで ρ* は ρ の複素共役表現(反傾表現)を表すとする。さらに詳しくは、L を Λ(ρ, s) へと置き換える。ここに Λ はL-函数にあるガンマ要素をかけた函数である.絶対値 1 のある複素数
群の玉河数を研究していた玉河恒夫にちなむ。この予想は玉河数予想(Tamagawa number conjecture)またはブロック・加藤予想(Bloch–Kato conjecture)と呼ばれている。代数的 K 理論にもミルナー予想の拡張であるブロック・加藤予想と呼ばれる予想(ウラジーミル・ヴ
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
フルヴィッツのゼータ函数 エプシュタインのゼータ函数 ハッセ・ヴェイユのゼータ函数 伊原のゼータ函数 新谷のゼータ函数 これらとは別に、 ワイエルシュトラスのゼータ関数(英語版) 隣接代数のゼータ関数 ヤコビのゼータ関数(ドイツ語版) レルヒゼータ函数(英語版) もある。 表示 編集
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)
数学の分野におけるラメ函数(ラメかんすう、英: Lamé function)あるいは楕円型調和函数(ellipsoidal harmonic function)とは、二階の常微分方程式の一つとして知られるラメの方程式(Lamé's equation)の解である。論文 (Gabriel Lamé 1837)
(図中の緑の曲線)は余弦函数に似たものであるが、丘の部分はより平坦に、谷の部分はより浅くなっている。 単色電磁平面波(英語版):一般相対性理論におけるアインシュタイン方程式のある重要な厳密平面波解の一例。マシュー余弦函数を用いて表される。 倒立振子 ラメ函数 Mathieu, E. (1868). “Mémoire
のフーリエ展開を持つラプラス・ベルトラミ作用素の固有函数である。) ゼータ函数は散乱行列 ϕ ( s ) {\displaystyle \phi (s)} の行列式の全ての極でゼロ点を持つ。ゼロ点のオーダーは、散乱行列の対応する極のオーダーに等しい。 ゼータ函数は、 1 / 2 − N {\displaystyle