语言
没有数据
通知
无通知
数学における多重ガンマ関数(たじゅうガンマかんすう、英: multiple gamma function) Γ N {\displaystyle \Gamma _{N}} はオイラーのガンマ関数とバーンズのG函数の一般化である。二重ガンマ関数は Barnes (1901)
function)あるいは、ルジャンドルの不完全ガンマ関数は、ガンマ関数の一般化の一つ。(完全)ガンマ関数の積分表示から、積分区間の端点の一方(すなわち積分域の始点か終点)を変数に置き換えたものとして定義される。 不完全ガンマ関数には2種類あり、ガンマ関数の積分区間[0,∞]を2つに分けて以下のように定義される。
〔数〕
〖gamma; Γ ・ γ 〗
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数の枝という。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式
数学の分野における定数関数(ていすうかんすう、英: constant function; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x) = 4 はすべての値を 4 へと写すため、定数関数である。