语言
没有数据
通知
无通知
オイラー数は、双曲線余割関数のテイラー展開における展開係数として定義される。 形式的には、テイラー級数: sech z = 2 e z + e − z = ∑ k = 0 ∞ E k k ! z k {\displaystyle \operatorname {sech} \,z={\frac
オイラーの定数(オイラーのていすう、英: Euler’s constant)は、数学定数の1つで、以下のように定義される。 γ := lim n → ∞ ( ∑ k = 1 n 1 k − ln ( n ) ) = ∫ 1 ∞ ( 1 ⌊ x ⌋ − 1 x ) d x {\displaystyle
のオイラー標数 χ(X) は交代和 χ ( X ) = ∑ n = 0 ∞ ( − 1 ) n b n {\displaystyle \chi (X)=\sum _{n=0}^{\infty }(-1)^{n}b_{n}} で定義される。ただし、bn は位相空間 X の n 次元ベッチ数、すなわちホモロジー群
オイラーのトーシェント関数(オイラーのトーシェントかんすう、英: Euler's totient function)とは、正の整数 n に対して、 n と互いに素である 1 以上 n 以下の自然数の個数 φ(n) を与える数論的関数 φ である。これは φ ( n ) = ∑ 1 ≤ m ≤ n (
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に
フルヴィッツのゼータ函数 エプシュタインのゼータ函数 ハッセ・ヴェイユのゼータ函数 伊原のゼータ函数 新谷のゼータ函数 これらとは別に、 ワイエルシュトラスのゼータ関数(英語版) 隣接代数のゼータ関数 ヤコビのゼータ関数(ドイツ語版) レルヒゼータ函数(英語版) もある。 表示 編集
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)