语言
没有数据
通知
无通知
2-部分群の正規化群は位数 12 の交代群 A4 に同型であり、一方で位数 2 または 3 の部分群の正規化群は位数 12 の二面体群になる。 Hall (1928) は G が有限可解群で π が素数からなる任意の集合とするとき、G がホール π-部分群を持ち、任意の二つのホール π-部分群
non-generating elements) の集合に等しい。ここで G の非生成元とは常に生成集合から取り除くことができる元である。つまり X ∪ {c} が G の生成集合であるときには、X もまた G の生成集合であるような G の元 c を指す。 Φ(G) は G の特性部分群である。とくに、それは
p-冪捩れ群の圏への関手を提供する。これらの関手の捩れ群への制限のすべての素数の集合にわたる積は、捩れ群の圏から p-捩れ群の圏のすべての素数に渡る積への忠実関手である。ある意味、これは p-捩れ群を孤立して研究することで一般の捩れ群についてすべてわかるということを意味する。 非アーベル群の捩れ部分集合は一般には部分群ではない。例えば
数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、英: normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性を最初に明らかにしたのはエヴァリスト・ガロアである。 群 G の部分群 N
全体をいくつかに分けたものの一部。 また, 小分けしたもの。
数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、英: commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、英: derived subgroup)とは、交換子全体が生成する部分群である。 交換子部分群は商がアーベル群となる最小の正規部分群であるという点で重要である。すなわち、商
には入らない。 極大右商環 (maximal right ring of quotients) は R の稠密右イデアルと関連して2つの方法で記述することができる。 1つの方法は、Ẽ(R) はある自己準同型環と同型な加群であることが証明され、その環構造からこの同型によって Ẽ(R) に環構造、極大右商環の構造が入る
が右自己移入環であれば、R に関する次の条件は同値である: 右非特異、フォン・ノイマン正則、右半遺伝、右 Rickart、Baer、半原始 (Lam 1999, p. 262)。 論文 (Zelmanowitz 1983) は非特異加群を極大右商環がある種の構造をもつような環のクラスを特徴づけるために用いた。 定理: R が環であれば、