语言
没有数据
通知
无通知
与えられた群の部分群全体の成す集合は、包含関係に関して完備束になる。これを部分群の束と言う(この束の下限は通常の集合論的な意味での共通部分だが、上限は集合論的な意味での和集合ではなく、それから生成される部分群である)。G の単位元を e と書けば、単位群 {e} が G の最小の部分群であり、また最大の部分群は
には入らない。 極大右商環 (maximal right ring of quotients) は R の稠密右イデアルと関連して2つの方法で記述することができる。 1つの方法は、Ẽ(R) はある自己準同型環と同型な加群であることが証明され、その環構造からこの同型によって Ẽ(R) に環構造、極大右商環の構造が入る
数学の確率論の分野における特異分布(とくいぶんぷ、英: singular distribution)とは、そこに含まれる各点での確率が 0 である零集合上に集められた確率分布のことを言う。しばしば特異連続分布とも呼ばれる。このような分布は、ルベーグ測度に関して絶対連続ではない。 各離散点は確率 0 であるため、特異分布
2-部分群の正規化群は位数 12 の交代群 A4 に同型であり、一方で位数 2 または 3 の部分群の正規化群は位数 12 の二面体群になる。 Hall (1928) は G が有限可解群で π が素数からなる任意の集合とするとき、G がホール π-部分群を持ち、任意の二つのホール π-部分群
non-generating elements) の集合に等しい。ここで G の非生成元とは常に生成集合から取り除くことができる元である。つまり X ∪ {c} が G の生成集合であるときには、X もまた G の生成集合であるような G の元 c を指す。 Φ(G) は G の特性部分群である。とくに、それは
普通と特にことなっている・こと(さま)。
は σ1, …, σq を対角成分とする q次対角行列、部分行列 O は零行列である。この分解を特異値分解、σ1, …, σq を行列 M の特異値と呼ぶ。 入力情報を n次列ベクトル v として表し、出力として Mv が得られるモデルを考えると、行列 M の特異値分解
加群(かぐん) 環上の加群 (R-module) その特別な場合であるアーベル群 (abelian group) も単に加群と呼ぶ場合がある。 リー環上の加群 (g-module) 群上の加群 (G-module) D加群 微分加群 このページは数学の曖昧さ回避のためのページです。一つの語句が複数の