语言
没有数据
通知
无通知
を持つ周期函数である。一般に任意の整数 n に対して exp(z + 2nπi) = exp(z) が成り立つ。この周期性のために、逆函数となるべき対数函数の複素数への拡張は無限多価となる。 絶対値に関して、|exp(z)| = |ex| および |exp(iy)| = 1 が成り立つ。すなわち、複素指数函数の絶対値は引数の実部
は、可換代数の場合の積分を変数に取る指数函数に相応する、非可換代数上で定義される演算である(経路順序積 (path-ordered product) や時間順序積とも)。実用上は、行列環あるいは作用素の代数において順序指数函数を考える。 K は実または複素数体、A は K 上の代数とする。写像 a: K →
虚数(きょすう、英: imaginary number)とは、実数ではない複素数のことである。すなわち、虚数単位 i = √−1 を用いて表すと、 z = a + bi(a, b は実数、b ≠ 0) と表される数のことである。 実数直線上にはないため、感覚的には存在しない数ととらえられがちであるが
(1)数や文字の右肩に付記して, その累乗を示す数字や文字。 a² や an などの2 や n。
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
体上の既約多項式での類似を参照。)この類似の脈絡では、数体と函数体のことを大域体と呼ぶことが多い。 有限体上の函数体の研究は、暗号理論や誤りコード訂正への応用を持っている。例えば、楕円曲線の函数体(公開鍵暗号のための重要な数学的ツール)は代数函数体である。 有理数体上の函数体はガロアの逆問題を解くことに重要な役割を果たす。
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に