语言
没有数据
通知
无通知
ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル
関数 H が微分可能であるものとすれば、H の勾配に単位ベクトルとの内積をとれば、そのベクトルの方向への丘陵の傾きが得られる。もう少し形式的に書くと、H が可微分であるとき、H の勾配と与えられた単位ベクトルとの内積は、その単位ベクトルの方向への H の方向微分に等しい。 スカラー関数 f (x1
ベクトル解析における回転(かいてん、英: rotation, curl)rot(または curl)は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。 ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転
『ベクトル解析』(英語版タイトル:Vector Analysis)は、エドウィン・ウィルソン(英語版)とウィラード・ギブスがイェール大学で行った講義を元に1901年に出版した史上初のベクトル解析の教科書である。 現在、日本語訳は存在しない。 まさにベクトル解析の原典とも言えるもので、この本によって
三重積(さんじゅうせき)とは3次元ユークリッド空間における3つのベクトルの積であり、ベクトル解析におけるスカラー三重積とベクトル三重積の総称である。 スカラー三重積(英: scalar triple product)は三つのベクトルから擬スカラー値を返す三項演算、すなわち、2つのベクトルのクロス積
a と b で作られる平面と、 a と c で作られる平面との交線は a に平行であることは自明である。また、a と b と c が一次従属 ([a, b, c ]=0) すなわち共面であるとき、2つの平面は平行なので左辺は0になる。このことから、右辺は [a, b, c ]a
(1)物事を分析して論理的に明らかにすること。 分析。
ばらばらにほぐれてなくなること。