语言
没有数据
通知
无通知
a と b で作られる平面と、 a と c で作られる平面との交線は a に平行であることは自明である。また、a と b と c が一次従属 ([a, b, c ]=0) すなわち共面であるとき、2つの平面は平行なので左辺は0になる。このことから、右辺は [a, b, c ]a
ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル
関数 H が微分可能であるものとすれば、H の勾配に単位ベクトルとの内積をとれば、そのベクトルの方向への丘陵の傾きが得られる。もう少し形式的に書くと、H が可微分であるとき、H の勾配と与えられた単位ベクトルとの内積は、その単位ベクトルの方向への H の方向微分に等しい。 スカラー関数 f (x1
いのかの度合いとしての「外向き度」を局所的に測るものである。発散がその点で零でないならば、その位置は湧出点か排出点でなければならない。(流れや流出のような言葉を使っているのは、ベクトル場を速度場や運動する流体のようなものと考えるからであることに注意)。 点 p におけるベクトル場 F の発散は、領域
ベクトル解析における回転(かいてん、英: rotation, curl)rot(または curl)は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。 ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転
『ベクトル解析』(英語版タイトル:Vector Analysis)は、エドウィン・ウィルソン(英語版)とウィラード・ギブスがイェール大学で行った講義を元に1901年に出版した史上初のベクトル解析の教科書である。 現在、日本語訳は存在しない。 まさにベクトル解析の原典とも言えるもので、この本によって
三重積(さんじゅうせき) 三重積 (ベクトル解析) ヤコビの三重積 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さい。このページへリンクしているページを見つけたら、リンクを適切な項目に張り替えて下さい。
direct product)あるいは外積(がいせき、英: outer product)は典型的には二つのベクトルのテンソル積を言う。座標ベクトル(英語版)の外積をとった結果は行列になる。外積の名称は内積に対照するもので、内積はベクトルの対をスカラーにする。外積