语言
没有数据
通知
无通知
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
C*) は、複素指数函数 ez を用いれば、オイラーの公式より cis(x) = eix と表せる。すなわち純虚変数 ix の指数函数(じゅんきょへんすうのしすうかんすう、英: imaginary exponential function)として書くことができる。複素指数函数とは別にこのような表記を設
を持つ周期函数である。一般に任意の整数 n に対して exp(z + 2nπi) = exp(z) が成り立つ。この周期性のために、逆函数となるべき対数函数の複素数への拡張は無限多価となる。 絶対値に関して、|exp(z)| = |ex| および |exp(iy)| = 1 が成り立つ。すなわち、複素指数函数の絶対値は引数の実部
は、可換代数の場合の積分を変数に取る指数函数に相応する、非可換代数上で定義される演算である(経路順序積 (path-ordered product) や時間順序積とも)。実用上は、行列環あるいは作用素の代数において順序指数函数を考える。 K は実または複素数体、A は K 上の代数とする。写像 a: K →
∫ R f ( t ) g ( t ) ¯ d t {\displaystyle \langle f,g\rangle =\int _{\mathbf {R} }f(t){\overline {g(t)}}dt} 正規直交基底 平面波基底 局在基底 放射基底関数 線形代数学 直交多項式 表示 編集
線型代数学 > 行列値関数 > 行列指数関数 線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、英語: matrix exponential; 行列乗)は、正方行列に対して定義される行列値関数で、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列
指数関数時間(しすうかんすうじかん)あるいは指数時間(しすうじかん)とは、計算理論において指数関数を用いてあらわされる計算時間。計算複雑性理論では指数関数時間で解ける判定問題のクラスのことをクラス EXPTIME(あるいは EXP)という。 一般に指数関数時間やその以上のアルゴリズムは時間がかかり
function)とは、指数関数の肩に指数関数を持つ関数である。一般形は f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} 。 指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が