语言
没有数据
通知
无通知
多重線型代数における交代多重線型形式(こうたいたじゅうせんけいけいしき、英: alternating multilinear form)、多重線型交代形式 (multilinear alternating form) または反対称多重線型形式 (antisymmertic multilinear
c\|\mathbf {u} \|^{2}} となるような定数 c > 0 が存在する場合を言う。 双線型作用素 多重線型形式 二次形式 内積空間 正定値二次形式 半双線型形式 ^ Jacobson 2009 p.346 ^ Zhelobenko, Dmitriĭ Petrovich (2006)
数学における多重線型代数(たじゅうせんけいだいすう、英語: multilinear algebra)とは、線型空間における多重線型性 (multilinearity) を扱う代数学の分野。多重線型性は典型的には線型環における積の構造に現れている。A を K –代数とするとき、自然数 n に対し、A 上で定義された
は vi に関して線型である。 一変数の多重線型写像は線型写像であり、二変数のそれは双線型写像である。より一般に、k 変数の多重線型写像は k 重線型写像 (k-linear map) と呼ばれる。多重線型写像の終域が係数体(スカラー値)のときはとくに多重線
数学の特に線型代数学における複素ベクトル空間 V 上の半双線型形式(はんそうせんけいけいしき、英: sesquilinear form; 準双線型形式)とは、写像 V × V → C で一方の引数に関して線型かつ他方の引数に関して反線型(英語版)となるようなものを言う。名称は「1 と 1/2」を意味するラテン語の倍数接頭辞
一度に全部扱う方法であるという点で言えば、保型表現は上で導入した保型形式の概念に完全に含まれるというようなものではない。G のアデール形式の商に対する L2-空間の内で、保型表現は無限個の有限素点に対する p-進群の表現たちと無限素点に対する特定の展開環の表現たちとの無限テンソル積である。これがどれ
bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな
同一種の生物集団に, 形態や形質についての何か異なるところのある二種類以上の個体が共存すること。