语言
没有数据
通知
无通知
数学の特に線型代数学における複素ベクトル空間 V 上の半双線型形式(はんそうせんけいけいしき、英: sesquilinear form; 準双線型形式)とは、写像 V × V → C で一方の引数に関して線型かつ他方の引数に関して反線型(英語版)となるようなものを言う。名称は「1 と 1/2」を意味するラテン語の倍数接頭辞
bilinear form, symmetric bilinear functional)は、ベクトル空間上の対称な双線型形式を言う。平たく言えば、実ベクトル空間上の標準内積を一般化した概念である。対称双線型形式は、直交極性や二次曲面の研究に非常に重要である。 文脈上、双線型形式について述べていると明らかな
という追加の性質を持つもの—がある。V 上の k-重線型交代形式の全体 Ak(V) は、V* の k-次外冪 ⋀k(V*)に同型であり、交代多重線型形式は多重余ベクトル (multi-covector) に対応する。 微分形式は多様体上の共変テンソル場であり、多様体の各点 p において p における接空間上の交代多重線型形式を与える。
一度に全部扱う方法であるという点で言えば、保型表現は上で導入した保型形式の概念に完全に含まれるというようなものではない。G のアデール形式の商に対する L2-空間の内で、保型表現は無限個の有限素点に対する p-進群の表現たちと無限素点に対する特定の展開環の表現たちとの無限テンソル積である。これがどれ
数学において双線型写像(そうせんけいしゃぞう、英: bilinear map)とは、二つのベクトル空間それぞれの元の対に対しての第三のベクトル空間の元を割り当てる写像であって、各引数に関して線型となるようなものを言う。その一つの例が、行列の積である。 V、W および X をある同一の基礎体 F 上のベクトル空間とする。写像
⇒ かたしき(型式)
飛行機・自動車などで, その構造・設備・外形などの違いによって他と区別される独自の型。 モデル。
のことと思って差し支えない。 一次方程式: 線型写像 a と定数 b が与えられているときの、未知数 x に関する方程式 a(x) = b 線型微分方程式: 線型写像 a と微分 ∂x := d/dx に対して微分作用素 a(∂x) を定義して、a(∂x)y = b を考える。 線型漸化式、線型力学系 斉次方程式の持つ線型性から、X