语言
没有数据
通知
无通知
ディリクレのL-関数(ディリクレのエルかんすう、Dirichlet L-function)は、リーマンゼータ関数を一般化したものである。算術級数中の素数の分布の研究に基本的な関数である。実際ディリクレは、初項と公差が互いに素であるような等差数列には無限に素数が含まれること(算術級数定理)を証明するた
をすると、ホッジ予想とテイト予想は不変式論(英語版)(invariant theory)のタイプの予想である。正しい定義を言うとすると、代数的サイクルの有理線形部分空間間は、これらの群作用の不変部分と見なせると予想されている。モチーヴィックガロア群は、これらのモチーフ的親玉と考えられている。 André
Qp-値を持つ函数として)、メイザー・メリン変換(英語版)(Mazur–Mellin transform)(と類体論)を経由する。 Deligne & Ribet (1980) では、前に行われている Serre (1973) に立脚し、総実体の解析的 p-進L-函数を構成した。Barsky (1978)
〖(フランス) motif〗
-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に
-函数への分解を起こす。 アルティンのL-函数 L(ρ,s) は L(ρ*, 1 − s) との函数等式を満たす。ここで ρ* は ρ の複素共役表現(反傾表現)を表すとする。さらに詳しくは、L を Λ(ρ, s) へと置き換える。ここに Λ はL-函数にあるガンマ要素をかけた函数である.絶対値 1 のある複素数
〔数〕
support)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。 与えられた集合 X 上の函数 f が、Y(⊂